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ABSTRACT 
The stability and stabilization problems for discrete systems with time-delay are discussed .The stability and 

stabilization criterion are expressed in the form of linear matrix inequalities (LMI). An effective method 

allowing us transforming a bilinear matrix Inequality (BMI) to a linear matrix Inequality (LMI) is developed. 

Based on these conditions, a state feedback controller with gain is designed. An illustrative numerical example 

is provided to show the effectiveness of the proposed method and the reliability of the results. 
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I. INTRODUCTION 
Time delay is an important factor that may affect 

the performance of dynamical systems. It can even, 

in same situation, cause instability of a system that 

we would like to control if the presence of such time-

delay during the design phases is not taken into 

account .For linear systems with time delay; we have 

seen an increasing interest during the last two 

decades. There are numerous results in the literature 

on time-delay systems [4,7,8,17].However; most 

results are focused on the   continuous-time linear 

systems with time delay. Stability, stabilization and 

control problems for this system have been studied 

and numerous results are available in the literature 

such as [3,5,9]. However, for discrete-time linear 

systems with time-delay only few results have been 

reported in the literature. We believe that the main 

reason for this is that these systems can be 

transformed to equivalent systems without time-delay 

and then current results on stability, stabilization and 

control design can be applied.  

Time delay is frequently encountered in many 

fields of engineering systems, such as manufacturing 

system, telecommunication, economic system, and 

chemical engineering system. It is generally regarded 

as a main source of stability and poor performance 

[12,14,19]. Therefore, the problems of stability 

analysis and stabilization of time-delay systems are 

important both in theory and practice, and are thus of 

interest to many researchers. Commonly, the 

approaches for solving time-delay systems can be 

classified into two types. Delay-dependent conditions 

[1,2,13], which include information on the size of 

delays, and delay-independent conditions, which are 

applicable to delays of arbitrary size. Since the 

stability of a system depends explicitly on the time-

delay, a delay-independent condition is more 

conservative, especially for small delays, while a 

delay-dependent condition is usually less 

conservative. 

Due to the development in the field of 

microelectronics analog controllers are yielding their 

places to digital computers. Indeed, and giving the 

importance of these control systems, we are using 

methods and numerical models to analyze and / or to 

control industrial processes. 

Two types of representation are available to 

model a continuous or discrete dynamic system 

namely the external representation that uses input-

output relations (transfer function) or the internal 

representation (matrix) of dynamic system which is 

based on the concept of state. To implement such a 

control structure and ensure the desired objectives, a 

modeling in the generally required discrete-time 

analog systems is needed. 

Digital control of physical systems requires, 

usually the development of discrete models. Several 

modeling strategies, developed in the literature 

reflecting a meaningful description of dynamical 

systems to be studied led to mathematical tools 

leading generally to linear or non-linear models with 

or without delays whose behavior may be more or 

less close to the real system [10,11,15,18]. These 

models are described by relations between input 

variables and output variables that can be modified 

by inputs considered as secondary (disturbances) that 

always exist in practice. 

The initial modeling of a discrete time-delays 

system often leads to writing a recurrent equation 

between different terms of the input and output 
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sequences. This formulation of the recurrent equation 

is well suited for numerical calculation. This is the 

form in which these algorithms are digital control 

methods. The system is fully defined and the 

recurrent equation can be solved if the initial 

conditions are specified.  

The analysis of the stability of delays systems 

has been conducted in the literature by numerous 

fundamental researches that depend on the type of 

systems considered and the scope. There are many 

study methods of the stability of linear discrete time-

delay systems. These stability criteria can be 

classified into two main categories namely the 

frequency criterion using the notion of the 

characteristic equations and the time criterion based 

on Lyapunov theory.    

This paper is organized as follows. In Section 2, 

the problem is stated and the objective of the paper is 

formulated. The problems of stability for the given 

system is examined and delay-dependent or 

independent sufficient condition is developed in 

section 3.We continue in section 4, to investigate the 

problem of stability and establish delay-dependent 

conditions. In addition, a design algorithm that 

stabilizes the resulting closed-loop system is 

provided. A numerical example is given in section 5 

to illustrate the proposed theoretical results. 

 

II. FORMULATION OF THE PROBLEM AND 

SOME PRELIMINARY 
 R                            Real vector space. 

*
( )

n n

ij
F f R          Real matrix. 

T
F                           Transpose of the matrix F. 

> 0F                      Positive definite matrix. 

0F                        Positive semi-definite matrix. 

( )F                        Eigenvalue of the matrix F. 

( ) || F ||F                Singular value of the matrix. 

max
| F || ( )| T

F F     Euclidean norm of the matrix F. 

 

Considering the dynamics of the discrete system 

with time-delays defined by the following equation: 

 

0 1( 1) ( ) ( ) ( )    x k A x k A x k q Bu k                     (1) 

 

Where  ( ) nx k R    is the state at time k . 

 x( ) ( ) , , 1,..,0q q         represents the initial 

condition. 
*n n

i
A R  are constant matrices of appropriate size. 

1,2,.....q    is a positive integer representing the time 

delay existing in the system. 

Whether V :
n

R R  in such a way that ( )V x  is 

bounded for all x  is bounded.  

      The aim of this paper is to establish sufficient 

conditions that guarantee the stability of the class of 

system (1). Based on stability conditions, the 

stabilization problem of this system (1) will be 

handled, too. The control law is given with a memory 

less state-feedback as:
1 2

( ) ( ) , ( )u k L x k L L L    

Where L  is the control gain to be computed. 

 

III. STABILITY ANALYSIS 
The stability of discrete time-delay systems has 

received much attention in the past several years [6, 

7]. In the literature, there are some necessary and 

sufficient stability conditions for these systems. 

Based on these results, some necessary and sufficient 

stability conditions for discrete-time delay systems 

can be obtained. Roughly speaking, the stability of a 

system is its ability to resist any unknown small 

influences. Since in reality disturbances are always 

encountered, stability is an important property of any 

control system, delayed or non delayed. 

In this section, LMIs-based conditions of delay-

dependent or independent stability analysis will be 

considered for discrete-time systems with time-

delays. The following result gives sufficient 

conditions to guarantee that the system (1) for 

( ) 0 , 0u k k   is stable.   

 

Fact 1: for any positive scalar α and for any two 

vectors x and y, we present the following inequality: 
1T T T Tx y y x x x y y    

                                  (2) 

Note that:  

 : || || <nV x R x  
                                (3) 

Lemma 1: [16] the zero solution of the difference 

system is asymptotically stable if there exists a 

positive definite ( ( )) :
n

V x k R R


  knowing that there 

is a > 0  as: 

 
2

( ( )) ( ( 1)) ( ( )) || ( ) ||V x k V x k V x k x k               (4) 

 

The above inequality is true throughout the linear 

resolution of the discrete system. If the above 

condition is valid for all ( )x k V , the zero solution 

of the difference system is locally asymptotically 

stable. 

 

Lemma 2: [16] for any constant symmetric matrix: 
*

, > 0
n n T

M R M M  ,   scalar as  / 0Z


  , and 

the vector function  : 0,
n

W R  , we have the 

following inequality: 

 

 
1 1 1

0 0 0

(i) (i) (i) (i)

T

T

i i i

w M w w M w
  


  

  

    
   
   
   
     (5) 

 

A-Delay-dependent stability: 

This group includes exact algebraic stability 

criteria depending on the delay and on the system 
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constants and stability criteria which yield an upper 

bound of the admissible delay. 

Using the stated theorem in the following and 

previously stated lemmas we can determine the 

asymptotic stability of the linear discrete system that 

is presented in equation (1). 

 

Theorem 1: 

The discrete time-delay system (1) is 

asymptotically stable for any delay > 0q , if there 

exist symmetric positive definite 

matrix > 0
T

P P , > 0
T

G G and > 0
T

W W  

satisfying  the following matrix inequalities: 

 

1

(1,1) 0 0

0 (2, 2) 0 0

0 0 (3,3)

  

 
 
 
 
 

           (6) 

Such as:          
2

0 0 0 0
(1,1) A PA A P A G W P

T T
q               (7) 

1

1 1 1 1
(2, 2) P W

T T
A A A A


                                     (8) 

(3,3) Gq                                                               (9) 

 

Evidence: Consider the Lyapunov function defined as 

follows: 

1 2 3
( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k                      (10) 

 Where: 

1
( ( )) ( ) ( )

T
V y k x k P x k                                         (11) 

 
1

2
( ( )) (i) (i)

k
T

i k q

V y k q k i x G x


 

                       (12) 

1

3
( ( )) (i) (i)

k
T

i k q

V y k x W x


 

                                     (13) 

 ( ) ( ), ( )y k x k x k q                                               (14)   

 

With > 0
T

P P , > 0
T

G G and > 0
T

W W  is 

symmetric positive definite solutions of (6) 

and  ( ) ( ), ( )y k x k x k q  . 

 

 Then the difference of ( ( ))V y k  along the path of the 

solution (4) is given by: 

 

1 2 3
( ( )) ( ( )) ( ( )) ( ( ))V y k V y k V y k V y k             (15) 

With: 

   

1 1 1

0 1 0 1

0 0 0 1

1 0 1 1

( ( )) ( ( 1)) ( ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

T T T T

T T T T

V y k V x k V x k

A x k A x k q P A x k A x k q x k Px k

x k A PA P x k x k A PA x k q

x k q A PA x k x k q A PA x k q

   

     

    

    

  
 (16) 

 

 

2 2 2

1

1

( ( )) ( ( 1)) ( ( ))

( ) ( )

( ) ( ) ( ) ( )

k
T

i k q

k
T T

i k q

V y k V x k V x k

q k i x i Gx i

qx k Gx k x i Gx i



 



 

   

   

 

 
 
 




              (17) 

3 3 3

1

( ( )) ( ( 1)) ( ( ))

( ) W ( )

( ) W ( ) ( ) W ( )

k
T

i k q

T T

V y k V x k V x k

x i x i

x k x k x k q x k q



 

   

 

   

 
 
 
       (18) 

Applying the Fact 1 in equation (16), the following 

inequality is obtained: 

 

0 1 1 0

0 0 1 1

2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

T T T T

x k A PAx k q x k q A PA x k

x k A P A x k x k q A Ax k q  

  

  

                 (19) 

Therefore: 
2

1 0 0 0 0

1

1 1 1 1

( ( )) ( ) ( )

( ) ( )

T T T

T T T

V y k x k A PA A P A P x k

x k q A PA A A x k q






    

   

  

  

  (20) 

 

Thus the expression (15) of ( ( ))V y k  is rewritten as 

follows: 

 

0 0 0 0

1 1 1 1

2

1

1

( ( )) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) W ( ) ( ) W ( )

T T T

T T T T

k
T T T

i k q

V y k x k A PA A P A P x k

x k q A PA A A x k q qx k Gx k

x i Gx i x k x k x k q x k q








 

    

     

    

  

  


  (21) 

Which is equivalent to 

 

0 0 0 0

1 1 1 1

2

1

1

( ( )) ( ) ( )

( ) ( )

( ) ( )

T T T

T T T

k
T

i k q

V y k x k A PA A P A qG W P x k

x k q A PA A A W x k q

x i Gx i








 

      

     



  

  



 (22) 

 

By using Lemma 2, we obtain the following 

inequality: 

1 1 11 1
( ) ( ) ( ) ( )

T
k k k

T

i k q i k q i k q

x i qG x i x i Gx i
q q

  

     


   
   
   
         (23) 

 

It follows that: 

 
2

0 0 0 0

1

1 1 1 1

1

( ( )) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) W ( ) ( ) W ( )

T T T

T T T

k
T T

i k q

T T

V y k x k A PA A P A P x k

x k q A PA A A x k q

qx k Gx k x i Gx i

x k x k x k q x k q








 

   

    

  

   

  

  




 (24) 

 

From Fact 1 we get the following expression: 
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0 0 0 0

1 1 1 1

2

1

1

( ( )) ( ) ( )

( ) ( )

( ) ( )

T T T

T T T

k
T

i k q

A A

V y k x k A PA A P A qG W P x k

x k q PA A W x k q

x i Gx i



 



 

       

       







  (25) 

Using Lemma 2, equation (25) will be rewritten as 

follows: 

2

1

1 1

0 0 0 0

1 1 1 1

( ) ( )

( ( )) ( ) ( )

1 1
( ) ( )






 

   

    

      



 
 

   
 

   
 

    
    
    

 

 

T T T

T T T

T
k k

i k q i k q

x k A PA A P A qG W P x k

V y k x k q A PA A A W x k q

x i qG x i
q q

 (26) 

2

1

1 1

1 1 1 1

1

( ) ( )

( ) ( )

1 1
( ) ( )

1
( ), ( ), ( )

(1,1) 0 0

0 (2, 2) 0

0 0 (3,3)

T T T

T T T

T
k k

i k q i k q

o o o o

T
k

T T

i k q

x k A PA A P A qG W P x k

x k q A PA A A W x k q

x i qG x i
q q

x k x k q x i
q

x






 

   



 

    

     



 

 

  

  

   
   
   

  
     

 
 
 
 
 

 



 



1

0

( )

( )

1
( )

( ) ( )

k

i k q

T

k

x k q

x i
q

y k y k



 



 
 
 
 
 
  
  
  

  



 (27) 

With: 

1

( )

( ) ( )

1
( )

k

i k q

x k

y k x k q

x i
q



 

 

 
 
 
 
 
  
  
  


                                             (28) 

Where: 

0
( ( )) ( ) ( )TV y k y k y k                                 (29) 

Thus the condition (6) is satisfied, then 

( ( ))V y k 0,  

 x(k) 0 which allowed us to conclude that the 

system defined in equation (5) is asymptotically 

stable.  

Finally we conclude that ( ( ))v y k  is negative 

definite; namely, there is a number     such that 

2

( ( )) ( )v y k y k    and, consequently, the asymptotic 

stability of the system follows immediately from 

Lemma 1. 

 

B- Delay-independent stability: 

Delay-independent stability criteria are very 

useful, since in reality it is difficult to estimate the 

delays, especially if those delays are time-varying 

and/or state-dependent. 

 

Theorem 2:  

The discrete time-delay system (1) is 

asymptotically stable, if there exist symmetric 

positive definite matrix > 0
T

N N and 

> 0
T

S S such that following linear matrix 

inequality (LMI) hold: 

0

2 1

0 1

0

0

0

T

T

T T

N S A S

N A S

A S A S S











 
 
 
 
 

.                       (30) 

Proof. Let the Lyapunov functional be: 

 

1

( ( )) ( )Sx( ) ( ) ( )
q

T T

j

V x k x k k x k j Nx k j


              (31) 

    > 0
T

N N and > 0
T

S S . 

The forward difference along the solutions of system 

(1) is: 

 

   0 1 0 1

0 0 0 1

0 1 1 1

( ) ( )

( ) ( )

( ( )) ( ) ( ) ( ) ( )

( )S ( ) ( ) N ( )

( ) ( )

T

T

T T T

T T

T T
x k x k

A SA S N A SAx k x k

A SA A SA N

V y k A x k A x k q S A x k A x k q

x k x k N x k q x k q

x k q x k q



 

 



    

  

    
          


   (32) 

If the following equation is satisfied: 

0 0 0 1

0 1 1 1

0

T T

T T

A SA S N A SA

A SA A SA N

  
 

  

                        (33) 

Then 

 

0 0 0 0 0 10 1

0 1 0 1 1 11 1

0

0 1

1

0

0

0

0
0

  
 






 

    
    

    

  
  

   

T T TT

T T TT

T

T

A SA S N A SA A SAA SA N S

NA SA A SA A SAA SA N

N S

N

A
S A A

A

   (34) 

Using Schur complement [5], it is easy to see that the 

condition (34) is equivalent to: 

0

1

1

0 1

0

0 0

T

T

T T

N S A S

N A S

A S A S S








 
 
 
 
 

                           (35) 

 

Note that the condition (35) is not LMI condition 

due to the existence of the term 1S  . Pre and post 

multiply (36) with dig {I, I, S } we obtain LMI 

condition (31). 

Thus the condition (31) is satisfied, then 

(y( ))V k 0,  

 ( ) 0x k  Which allowed us to conclude that the 

system defined in equation (5) is asymptotically 

stable.  

Finally we conclude that (y( ))v k  is negative 

definite; namely, there is a number     such that 

2

(y( )) ( )v k y k    and, consequently, the asymptotic 
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stability of the system follows immediately from 

Theorem 2. 

 

IV. STABILIZABILITY 
In this section we consider the stabilizability 

problem of linear system with mode dependent time 

delays. A state feedback controller design method 

will be given. If the time-delay in system (1) is 

known, the following state feedback controller is 

considered: 

1 2( ) ( ) , ( )u k L x k L L L                                   (36) 

Definition system (1) is stabilizable, if for every 

initial state there exists a state-feedback controller 

(36) with gain 
1 2( )L L L such that the resulting 

closed-loop of system is stable. 

   Replacing the control ( )u k by its expression given 

by equation (36) and substituting it into system (1), 

we get the following dynamics for the closed-loop 

system: 

0 1

0 1

0 1

( 1) ( ) ( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( )

x k A x k A x k q Bu k

A x k A x k q B L x k

A BL x k A x k q

    

    

   

        (37) 

The aim of this important work is to design a 

memory less state-feedback controller which 

stabilizes the system (1), when the memory less state-

feedback is substituted with plant dynamics (6). Note 

that stability analysis condition (6) is not convenient 

for us to design a memory less state-feedback. 

The problem is to determine a stabilizing 

compensator L , which satisfies the following linear 

matrix inequality: 

 

Theorem 3: 

The discrete time-delay system (1) is 

asymptotically stable for any delay > 0q , if there 

exist symmetric positive definite 

matrix
1 1

> 0
T

P P ,
1 1

> 0
T

G G and
1 1

> 0
T

W W  

satisfying the following matrix inequalities: 

3

(1,1) 0 0

0 (2,2) 0 0

0 0 (3,3)



 
 

  
 
 

                            (38) 

Such as:    
2

0 1 0 0 1 0

1 1 1

(1.1) (A ) P (A ) (A ) P (A )

G W P

T T
BL BL BL BL

q

      

  
  (39)                                                                        

1

1 1 1 1 1 1
(2.2) A P A A A W

T T



                                   (40) 

1
(3.3) qG                                                              (41) 

 

We note that the inequality (39) is affine result, 

the product term 
1P  and L  form a Bilinear Matrix 

Inequality (BMI) (nonlinear).
0A  and B  are given 

matrix, 
1P  and L  are two variables vectors. Finding 

a control law ( ) ( )u k L x k   stabilizing the system 

(1) can be carried out as follows: 

 Find 
1P  and L such that inequality (6) is 

satisfied (feasibility problem) 

 X BL , from X pulling the value of 

compensator L. 

 

A BMI problem can be reformulated as an LMI 

problem. Nevertheless, in some cases it is possible to 

introduce some transformation rules that can rewrite 

the BMI optimization problem into a problem of 

constrained optimization LMI equivalent such that: 

 rebasing. 

 variable change. 

 elimination of variables. 

 completion of the edges. 

 Introduction of additional variables (bogus 

variables). 

Several methods of resolution, with different 

variants are possible. We focus on one. To solve the 

problem presented in this work we are interested only 

in the method based on the change of variable. By 

appropriate changes of variables we can transform a 

BMI as a LMI. Through a series of transformations, 

we will show that we can obtain an equivalent LMI 

constraint after a change of appropriate variables. 

0 1 0 1 0 0 1 1

2 2 2 2

0 1 0 1 0 0 1 1

1 1 1

(1.1) A P A P A A P P

(A P A P A A P P )

qG

T T T T T T

T T T T T T

L B BL L B BL

L B BL L B BL

W P



    

    

  

 (42) 

Let: X BL  , T T TX L B  

 

We obtain a new bilinear matrix inequality variable, 

and even non-linear. 

0 1 0 1 0 0 1 1

2 2 2 2

0 1 0 1 0 0 1 1

1 1 1

(1.1) A P A P A A P P

(A P A P A A P P )

qG

T T T T

T T T T

X X X X

X X X X

W P



    

    

  

  (43) 

 

We choose a new variable: 

1
Y PX ,

1

T T
Y X P  the value of X is 

drawn 1

1
X P Y


 . 

The expression (43) will be rewritten as follows: 

0 1 0 0 0

2

0 1 0 1 0 0 1

1 1 1

(1.1) A P A A A

(A P A P A A P )

qG

T T T T

T T T T

Y Y X Y

Y Y Y Y

W P



    

    

  

         (44) 

 

Posing: T
Z X Y , 

1
V PY , 

1

T T
V Y P , 1

1
Y P V


  

 

Finally there leads to a linear matrix inequality (LMI) 

feasible for new variables which covers: 
1

1
Y P V


 , 

1
V PY , T

Z X Y , which themselves 

cover: 
X BL  then we can write (6) as: 
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0 1 0 0 0

2

0 1 0 0 0

1 1 1

(1.1) A P A A A

(A P A A A )

qG

T T T

T T T T

Y Y Z

V V Y Y

W P



    

    

  

              (45) 

1

1 1 1 1 1 1
(2.2) P W

T T
A A A A


                                   (46) 

 
1

(3.3) Gq                                                            (47) 

From V is pulled Y, from Y is pulled X then pulls the 

expression of L. 

 

V. NUMERICAL EXAMPLE 
To illustrate the usefulness of the previous 

theoretical results, let us give the following numerical 

examples. 

      Consider the linear discrete time delay system 

autonomous defined by the following equation: 

 

0.1 0.02 0.1 0.01 0
( 1) ( ) ( 1) ( )

0.1 0.15 0.2 0.2 1
x k x k x k u k    



     
     
     

  (37) 

 

with: 

0

0.1 0.02

0.1 0.15
A 



 
 
 

  ,  
1

0.1 0.01

0.2 0.2
A 

 
 
 

  and  
0

1

B 
 
 
 

 

 

A-Applying Theorem 1 to the equation defined in 

system (1) and through the relationship (6) .Matrix P, 

W and G symmetric positive definite which satisfy 

the sufficient condition for stability is obtained: 

 

3.2162   0.0172

   0.0172   3.1592
P 

 
 
 

,
1.0696   0.0055

  0.0055  1  .0555
G





 
 
 

and
1.1628   0.0712

   0.0712  1  .1295
W 

 
 
 

 

 

B-Applying Theorem 2 to the equation defined in 

system (1) and through the relationship (30).Matrix N 

and S symmetric positive definite which satisfy the 

sufficient condition for stability is obtained: 

0.1158  1  .2007

  1  .2007  1  .0573
N 

 
 
 

and 
0.6163  1  .6801

1  .6801  1  .0583
S 

 
 
 

 

 

C-Let us now, see how we can use the design 

algorithm of theorem3, to determinate the controller 

gain  1 2
,L L L . For this purpose let us consider the 

following data: 

 

0

0.1 0.02

0.1 0.15
A 



 
 
 

 ,  
1

0.1 0.01

0.2 0.2
A 

 
 
 

 and  
0

1

B 
 
 
 

 

 

Using this data, solving LMIs (38) gives the 

following feasible solution: 

 

1

3.2162   0.0172

   0.0172   3.1592
P 

 
 
 

,
1

1.0696   0.0055

  0.0055  1  .0555
G






 
 
 

,
1

1.1628   0.0712

   0.0712  1  .1295
W 

 
 
 

 

 

 0.1465   -0.0072

   13.6978   -0.6734
V  

 
 
 

           
1

1Y P V
 

 

0.0228   -0.0011

    4.2589   -0.2094
Y  

 
 
 

            
1

1X P Y
 

 

 
    0         0

    1.3242   -0.0651
X  

 
 
 

        X BL  

 

Which gives the following gain:  

                                                   1.3242 0.0651L     

 

VI. CONCLUSION 
In this paper we have investigated the stability 

and stabilization of discrete time systems with time-

delay. Moreover, we have got same equivalent 

stability conditions which are presented as LMI and 

thus easy to test, using the Lyapunov function 

approach .Furthermore; we have designed a feedback 

controller with gain based on one of these stability 

conditions. Finally, we have used a numerical 

example illustrating effectiveness of the proposed 

method. 
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